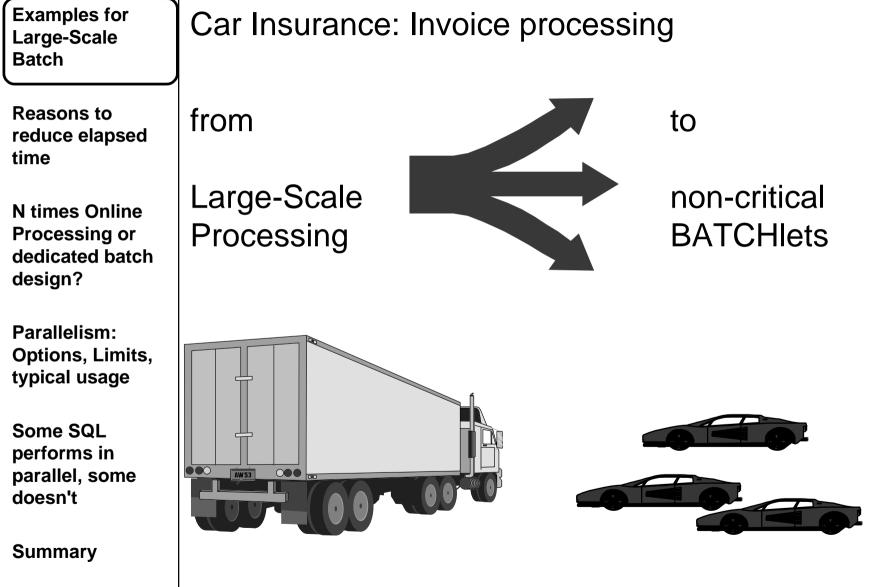
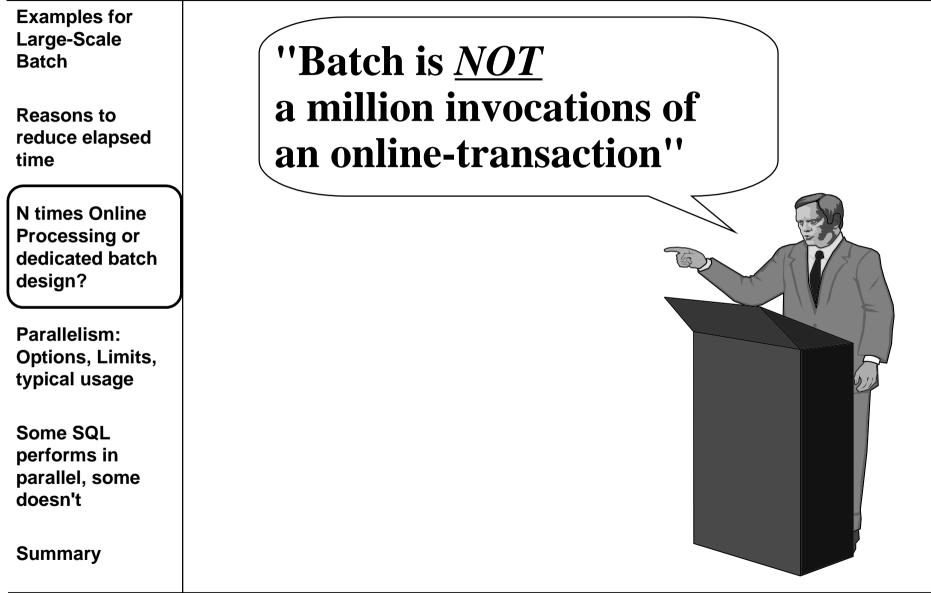


Examples for Large-Scale Batch	Car Insurance: Invoice processin	g
	Example #1: once a year for all policies	
Reasons to reduce elapsed time	assume 10 million policies = 10 million units	s-of-work in one job
N times Online Processing or dedicated batch	elapsed time = 10.000.000 * 50 ms =	500.000 s 139 hours
design?	Probably 10 parallel batch-streams needed Not viable in parallel to online processing	ca. 6 days
Parallelism: Options, Limits,		
typical usage	ONLINE	BATCH
Some SQL performs in parallel, some doesn't		
Summary		



Examples for Large-Scale Batch	Car Insurance: Invoice proces	sing
	Example #2: date of contract = date of in	nvoice
Reasons to reduce elapsed time	assume 10 million policies even distribution of date of con	tact
N times Online	200 working days/yr = 50.000 u	units-of-work per day
Processing or dedicated batch design?	elapsed time = 50.000 * 50 ms = 2.50 Can be processed in one job	00 s = 42 minutes
Parallelism:	Concurrent processing may have trouble	Э
Options, Limits, typical usage	ONLINE	BATCH
Some SQL performs in parallel, some doesn't		
Summary		

Examples for Large-Scale Batch	Car Insurand	ce: Invoice processing
Reasons to reduce elapsed	Example #3:	date of contract = date of invoice AND batch designed as transactional processing
time N times Online Processing or		on policies,even distribution of date of contact units-of-work per day, 1 batch job = 1 unit-of-work
dedicated batch design?	Batch jobs starte	50.000 * 50 ms = 2.500 s = 42 minutes ed as asynchronous task or by MQ
Parallelism: Options, Limits, typical usage	solution may be streams	prohibited by organizational restrictions or related job
Some SQL performs in	ONLINE	BATCH
, parallel, some doesn't		
Summary		



Examples for Large-Scale Batch	Batch-window is smaller than elapsed time of a "big iron"-job
Reasons to reduce elapsed time	==> elapsed time of jobs must be reduced
N times Online Processing or dedicated batch	Concurrent Online and Batch processing
design?	No possibility for maintaining a batch-window
Parallelism: Options, Limits, typical usage	demand for short commit intervals Online and Batch must be compatible in terms of locking
Some SQL performs in parallel, some doesn't	==> many short-running batch jobs "transactional" batch process only one logical unit of work independent processing of independent objects
Summary	Why not parallelize additionally?

Examples for Prefetch flavors Large-Scale **Batch** information sources for prefetch ==> Reasons to sequential prefetch ==> reduce elapsed list prefetch ==> time dynamic prefetch/sequential detection ==> N times Online **Processing or** dedicated batch Batch profits from dedicated design design? Parallelism: **Options**, Limits, Prefetch can kill your online performance typical usage Some SQL performs in parallel, some Prefetch is one of the key performance factors doesn't for batch **Summary**

			DD2 03ER3 GRO
Examples for Large-Scale Batch	Prefetch flavors:	informati	on sources for prefetch
Reasons to reduce elapsed time N times Online Processing or dedicated batch design?	PLAN_TABLE.F	S = L = bla	 prefetch with page list ank = unknown or no prefetch
Looigin		ich on preietci	1
Parallelism: Options, Limits, typical usage	DECLARE CUR SELEC		
Some SQL performs in	 ORDE	R BY	
parallel, some doesn't	Cursors should	always contai	n the ORDER BY clause
Summary			

Examples for Large-Scale Batch	Prefe	ch flavors: Sequential Prefet	ich
Reasons to reduce elapsed	=>	ORDER BY clause without physical sort, matching sequence	i.e., RID's are in
time	=>	First FETCH transmits 32 pages from DA	SD
N times Online Processing or dedicated batch design?	=>	The application waits for first FETCH as i synchronous I/O, subsequent FETCHes from the bufferpool	
Parallelism: Options, Limits, typical usage	=>	When last matching row from the 32 page another 32 pages are transmitted	es is FETCHed,
Some SQL performs in parallel, some doesn't	=>	Average time needed for one FETCH: 2	ns
Summary			

Examples for Large-Scale Batch	Prefet	tch flavors: List Prefetch
Reasons to reduce elapsed time	=>	ORDER BY clause requires physical sort, e.g. ORDER BY is supported by non-clustering index objective is to avoid the random access to pages
N times Online Processing or dedicated batch design? Parallelism:	=>	Matching RID's are collected (in the RID pool) and sorted by page-no and rid-no ANDing/ORing in case of multiple index access is applied resulting RID's are passed to the buffer manager for retrieval
Options, Limits, typical usage	=>	Access to the data is skip-sequential
Some SQL performs in parallel, some doesn't	=>	Average time needed for one FETCH depends on the number of matching rows per page
Summary	less effi	cient than Sequential Prefetch, but much better than random access

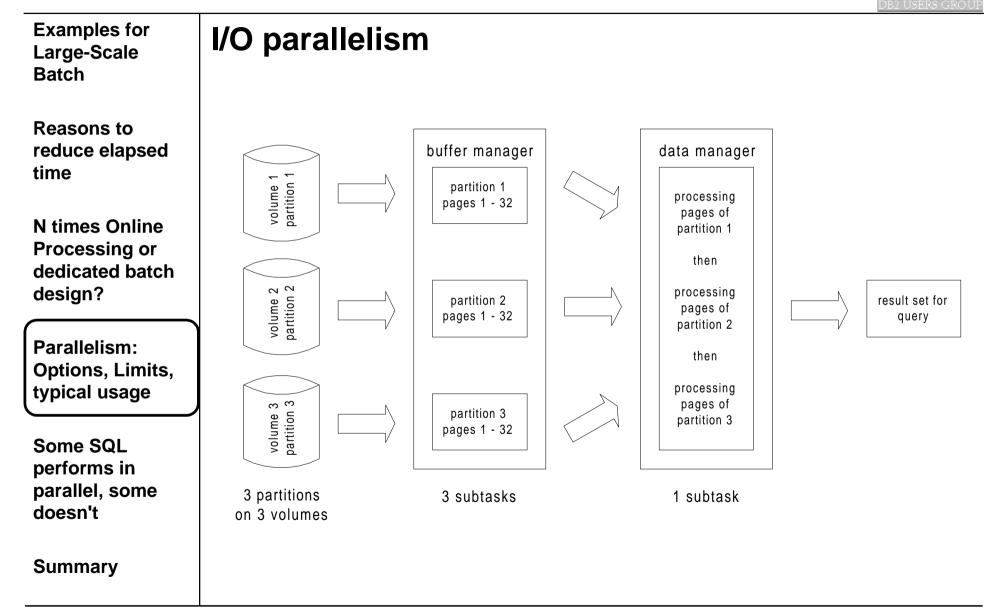
Examples for Large-Scale Batch	Prefe	tch flavors:	Dynamic Prefetch/ Sequential Detection
Reasons to reduce elapsed time	=>	0	all cursors are supervised for sequential no matter how they are marked in the (at bind time)
N times Online Processing or dedicated batch design?	=>	5-out-of-last-8-p	principle:
Parallelism: Options, Limits,			ages of 8 subsequent pages in the page buffer or rows, Dynamic Prefetch is switched on
typical usage		,	pages from 8 subsequent pages are needed, ch is switched off
performs in parallel, some doesn't	=>	independent fro	m BIND
Summary			

Examples for Avoid Prefetch in online processing Large-Scale Batch **Sequential Prefetch** retrieves 32 pages from DASD Reasons to with one call (BP \geq 1000 buffers) reduce elapsed Assume row length of 200 bytes => 20 rows/page time At first FETCH 32 * 20 = 640 rows are transmitted normal online result set: 100 rows, i.e., a 5 pages N times Online result set is processed in more than one dialog step **Processing or** dedicated batch design? **List Prefetch** ... doesn't kill you, it only hurts sort is performed anyway Parallelism: small result sets are favorable because of reduced **Options**, Limits. number of I/O's on data typical usage large result sets are more expensive than Some SQL Sequential Prefetch performs in parallel, some **Dynamic Prefetch** doesn't depends on ORDER BY clause and size of result set Summary

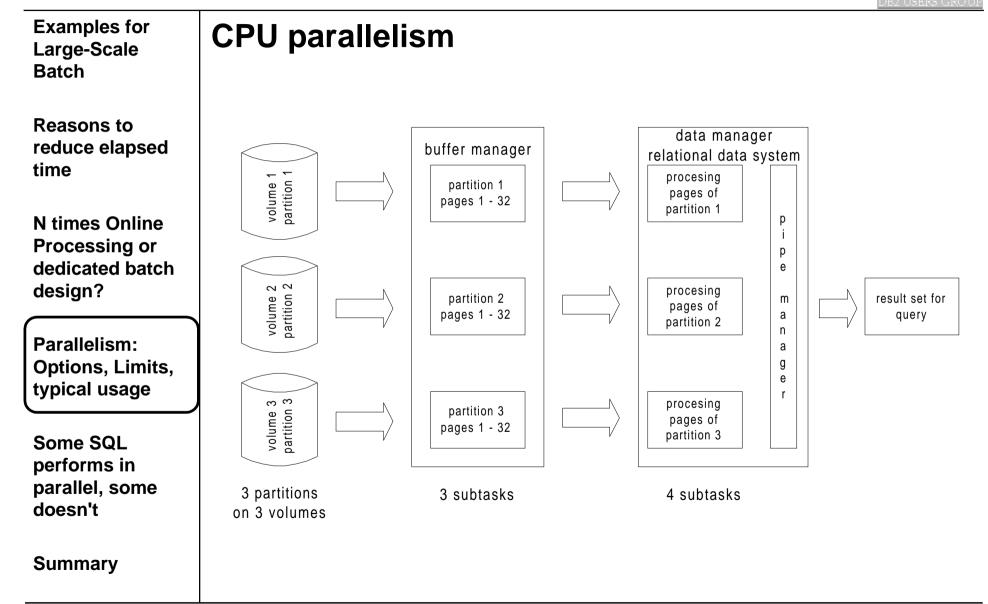
Examples for Large-Scale Batch	Avoid Prefetch in online processing
	How to get rid of Prefetch?
Reasons to reduce elapsed time	No selective switch-off possible, e.g. Sequential Prefetch OFF
N times Online	List Prefetch ON
Processing or	All Prefetch flavors are switched off at one time
dedicated batch design?	DECLARE cursor-name CURSOR FOR
Parallelism:	SELECT
Options, Limits,	FROM
typical usage	WHERE
	ORDER BY
Some SQL performs in parallel, some doesn't	OPTIMIZE FOR 1 ROW
Summary	

Examples for Large-Scale Batch	Prefetch is one of the key performance factors for batch
Reasons to reduce elapsed time	Examples: Mass processing of data with one cursor (single table access)
N times Online Processing or dedicated batch design?	Table-size 10.000.000 rows rowlength 250 bytes = 16 rows/page = 625.000 pg result set of cursor amounts to 500.000 rows
Parallelism: Options, Limits, typical usage	Example 1: direct access to data without Prefetch with List Prefetch
Some SQL performs in parallel, some doesn't	Example 2: Processing via clustering index
Summary	without Prefetch with Sequential Prefetch

Examples for Large-Scale Batch	Prefetch is one of the key performance factors for batch
Reasons to reduce elapsed time	Example 1: direct access to data
	without Prefetch
N times Online Processing or dedicated batch design?	rows are located in 500.000 different pages 500.000 sync.I/O * 20 ms = 10.000 s = 3 hours (sync. I/O on index leaf pages aren't reflected)
Parallelism: Options, Limits,	with List Prefetch
typical usage	same result, if all rows of the result set are
Some SQL performs in parallel, some doesn't	located in different pages
	shorter I/O-time if pages contain more than one row of result set
Summary	e.g. 500.000 rows in 200.000 pages results in I/O time reduced by 60%


Examples for Large-Scale Batch	Prefetch is one of the key performance factors for batch
Reasons to reduce elapsed time	Example 2: near-sequential processing via clustering index
	without Prefetch
N times Online Processing or dedicated batch	cf. example 1: 3 hours
design?	with Sequential Prefetch
Parallelism: Options, Limits,	pages are provided asynchronously
typical usage	dependent on WHERE clause between 31.250 and 625.000 pages have to be read from DASD
Some SQL	020.000 pages have to be read norm bride
performs in parallel, some doesn't	31.250 pages * 2 ms = 62,5 s = 1 min 625.000 pages * 2 ms = 1250 s = 21 min
Summary	

Examples for Large-Scale Batch	What is Parallelism?					
Reasons to reduce elapsed	Parallel I/O on a table or index in a partitioned tablespace					
time	Flavors of Query-Parallelism					
N times Online Processing or dedicated batch	==>	I/O parallelism	since V3.1			
design?	==>	CP parallelism	since V4.1			
Parallelism: Options, Limits, typical usage	==>	Sysplex parallelism	since V5.1			
Some SQL performs in	Prerequisit	es for Query-Parall	elism			
parallel, some doesn't	==>	Bind options				
Summary	==>	Other requirements (e.g.	, CPU)			



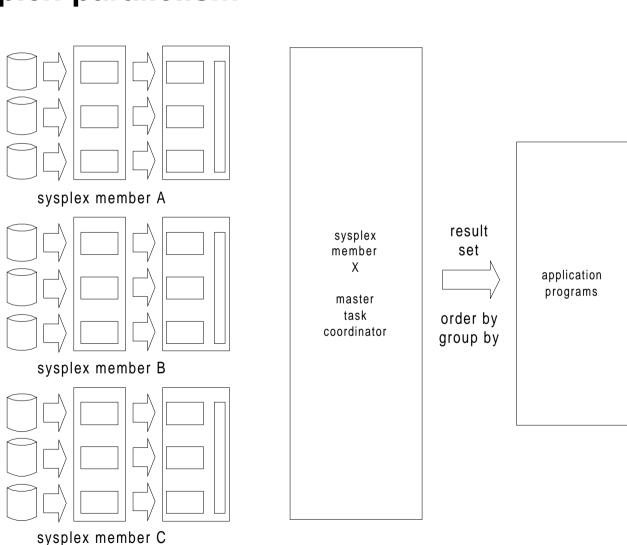
Examples for Large-Scale Batch	I/O parallelism
Reasons to reduce elapsed time	Technique utilization of multiple subtasks with asynchronous read engines every read engine reads strings of 32 pages with
N times Online Processing or dedicated batch design?	Sequential Prefetch into virtual buffer pool Scenarios acceleration of I/O bound read-only queries
Parallelism: Options, Limits, typical usage	access to partitioned tablespaces partitions are positioned on multiple volumes long elapsed times
Some SQL performs in parallel, some doesn't Summary	Limits only viable for read-only queries sufficient size of bufferpool required parallelism at device level and in the buffer manager, but not in the data manager

Examples for Large-Scale Batch	CPU parallelism
Reasons to reduce elapsed time	Technique utilization of multiple subtasks for all DB2 functions, not only for asynchronous read engines subtasks can run on all processors of a CEC
N times Online Processing or dedicated batch design? Parallelism: Options, Limits,	Scenarios acceleration of I/O bound read-only queries access to partitioned tablespaces partitions are positioned on multiple volumes long elapsed times
typical usage	Limits
Some SQL performs in parallel, some doesn't	only viable for read-only queries sufficient size of bufferpool required data must be placed on many devices, else contention of subtasks
Summary	the more processors, the better only with type-2-indexes

Examples for Large-Scale Batch	Sysplex parallelism				
	Technique				
Reasons to reduce elapsed time	utilization of multiple sub-tasks for all DB2 functions, not only for asynchronous read engines subtasks can run on all processors of a CEC				
N times Online	1 parallel sysplex = up to 32 MVS/ESA CEC's coupled				
Processing or dedicated batch	loosely, each with one MVS/ESA and DB2 image				
design?	Scenarios				
Parallelism: Options, Limits, typical usage	acceleration of I/O-bound read-only queries access to partitioned tablespaces, very large TS partitions are positioned on multiple volumes, at max. 254 very long elapsed times				
Some SQL	very long elapsed limes				
performs in parallel, some doesn't	Limits should a query be run on various/all processors of a				
Summary	parallel sysplex? aren't there other tasks waiting for resources?				

Examples for Large-Scale Batch

Sysplex-parallelism


Reasons to reduce elapsed time

N times Online Processing or dedicated batch design?

Parallelism: Options, Limits, typical usage

Some SQL performs in parallel, some doesn't

Summary

Examples for Large-Scale Batch	Prerequisites for Query-Parallelism			
	Bind options			
Reasons to reduce elapsed time	static SQL			
N times Online	DEGREE(ANY) at BIND or REBIND			
Processing or dedicated batch design?	only effective for static SQL			
Parallelism:	packages contain static AND dynamic SQL			
Options, Limits, typical usage	dynamic SQL			
Some SQL performs in parallel, some doesn't	SET CURRENT DEGREE = "ANY"			
	this special register is only effective for dynamic SQL			
Summary				

Examples for Large-Scale Batch

Reasons to reduce elapsed time

N times Online Processing or dedicated batch design?

Parallelism: Options, Limits, typical usage

Some SQL performs in parallel, some doesn't

Summary

Prerequisites for Query-Parallelism

Other requirements

VPPSEQT

(virtual bufferpool parallel sequential threshhold) must be sufficiently sized

For CPU-parallelism at least 2 **ACTIVE** tightly coupled processors are required

Remark: If only one processor is active at the start of a query, I/O-parallelism will be activated

Examples for Large-Scale Batch	PLAN_TABLE is information source
	variant 1: EXPLAIN particular statement
Reasons to reduce elapsed time	step 1: population of PLAN_TABLE
N times Online Processing or dedicated batch design?	EXPLAIN PLAN SET QUERYNO = nn FOR SELECT FROM WHERE
Parallelism: Options, Limits, typical usage	host-variables must be eliminated, instead use value or ?
Some SQL performs in parallel, some doesn't	step 2: show results from PLAN_TABLE SELECT * FROM PLAN_TABLE
Summary	WHERE QUERYNO = nn ORDER BY QBLOCKNO, PLANNO, MIXOPSEC

Examples for Large-Scale Batch	PLAN_TABLE is information source					
	variant 2: BIND with option EXPLAIN(YES)					
Reasons to reduce elapsed time	relevant information is stored in package_owner.PLAN_TABLE					
N times Online Processing or dedicated batch design?	CURRENT SQLID is qualifier for PLAN_TABLE i case of dynamic SQL					
Parallelism: Options, Limits, typical usage	General remarks:					
	EXPLAIN(YES) should always be activated					
Some SQL performs in parallel, some doesn't	overhead can be neglected in comparison to the benefits					
Summary	added cost equals additional INSERTs into PLAN_TABLE					

Examples for	PLAN_TABLE Column	Explanation	
Large-Scale	ACCESS_DEGREE	number of parallel tasks of a query	
Batch		settled during BIND	
		with usage of host-variables the value may be 0	
Reasons to		number of parallel tasks can differ at execution time	_
reduce elapsed		norellal group ID for access to now table (of CODTN)	_
time	ACCESS_PGROUP_ID		
		a parallel group is a set of commands with equal number of tasks executed in parallel	
N times Online			-
Processing or	JOIN DEGREE	number of parallel tasks for a join of composite table	-
dedicated batch		(SORTC_) with new table	
design?		is settled at bind time, but can differ at execution time	
		with usage of host-variables the value may be 0	
Parallelism:			
Options, Limits,	JOIN_PGROUP_ID	ID of parallel group that joins the composite table with	
typical usage		the new table	
		ID of norellal group for norellal cort of composite table	_
Some SQL	SORTC_PGROUP_ID	ID of parallel group for parallel sort of composite table	_
performs in	SORTN_PGROUP_ID	ID of parallel group for parallel sort of new table	-
parallel, some		ind of parallel group for parallel cort of new table	-
doesn't	PARALLELISM_MODE	type of parallelism	
		I = query I/O parallelism	
Summary		C = query CPU parallelism	
,		X = sysplex query parallelism	

Examples for		1				
Large-Scale	Query uses	Parallelism possible?			Remarks	
•		I/O	CPU	Syspl		
Batch					I ransporting the locks to the coordinator	
					too expensive	
Reasons to					Instead use BIND-option CS or UR and	
reduce elapsed					execute	
time					LOCK TABLE IN SHARE MODE	
	Isolation RR or RS	Y	Υ	N	before query execution	
N times Online						
	access with RID list				PLAN_TABLE.PREFETCH = 'L'	
Processing or	(list prefetch or multiple				PLAN_TABLE.ACCESSTYPE = 'M', 'MX',	
dedicated batch	index access)	Y	Y	Ν	'MI', 'MQ'	
design?						
	access with type-1-index	N	Ν			
Parallelism:						
Options, Limits,					DB2 attempts parallel processing for outer	
typical usage					table	
					in case of non-correlated queries both	
	correlated subquery	N	Ν	Ν	tables are parallelized	
Some SQL	· · · ·				•	
performs in	IN-list	Ν	Ν	Ν	PLAN_TABLE.ACCESSTYPE = 'N'	
parallel, some doesn't						
doesnit	updateable or					
	ambiguous cursor with					
Summary	CURRENTDATA(YES)	Ν	Ν	Ν		

Examples for Large-Scale					
Batch					
	Query uses	Paral	lelism p	ossible	Remarks
Reasons to		I/O	CPU	Syspl	
reduce elapsed	OUTER JOIN	N	Ν	N	PLAN_TABLE.JOINTYPE = 'F', 'L'
time					
	Merge scan join with				
	more than one column	Ν	Ν	Ν	
N times Online					
Processing or	materialized views,				
dedicated batch	materialized nested				
design?	table expressions	Ν	Ν	Ν	
Parallelism:	EXIST in WHERE-				
Options, Limits,	predicate	N	Ν	Ν	
typical usage					
typical usage	UNION for more than				DB2 cannot process independent sub-
	one query block	N	Ν	Ν	selects in parallel
Some SQL					
performs in					If a temporary table is populated with
parallel, some	access to temporary				INSERT INTO SELECT, the subselect
doesn't	table	N	Ν	Ν	can be performed in parallel

Summary

Examples for Large-Scale Batch	Read-only Batch running alone	Read-only Batch running together with others
Reasons to reduce elapsed time	FOR FETCH ONLY PREFETCH LOCK table Table unload	FOR FETCH ONLY PREFETCH
N times Online Processing or dedicated batch design?	Query parallelism on part. TS	Query parallelism on part. TS
Parallelism: Options, Limits,	Batch with Updates running alone	Batch with Updates running together with others
typical usage	PREFETCH Table unload	PREFETCH
Some SQL performs in parallel, some doesn't	Query parallelism on part. TS Short COMMIT intervals	Query parallelism on part. TS Short COMMIT intervals
Summary		

Examples for Large-Scale Batch	Further recommendations, esp. for parallel processing						
Reasons to reduce elapsed time N times Online		query parallelism	jobs running in parallel	combination of both			
Processing or dedicated batch design?	Avoi	d hat anot partition	nortitions should	d ha of cimilar ciza			
Parallelism:		d hot-spot partitions	s, partitions should	a be of similar size			
Options, Limits, typical usage	artificial keys with no (organizational) meaning						
Some SQL performs in parallel, some doesn't		otherwise manual balancing necessary (changes imply DROP + CREATE, wait for version 6) V6: ALTER INDEX to adjust partition limits, REORG PENDING					
Summary							

Examples for Large-Scale Batch	Jobs running in parallel
Reasons to reduce elapsed time N times Online	input data should match the partitioning key
	 no interference on partitioning index no timeouts, no deadlocks
Processing or dedicated batch design?	Avoid timeout/deadlock
Parallelism: Options, Limits, typical usage	short COMMIT intervals
	parallelize job streams according to partitioning index
Some SQL	Minimize locking
performs in parallel, some doesn't	short COMMIT intervals eliminate ambiguous cursors => FOR READ ONLY
Summary	

Examples for Large-Scale Batch	Secondary indexes
Reasons to reduce elapsed time	Type-1-indexes frequently cause timeout and deadlock problems
	=> move to type-2-indexes
N times Online Processing or dedicated batch	=> V6: no further support of type-1-indexes
design?	Update activities of jobs running in parallel
Parallelism: Options, Limits, typical usage	separate class
Some SQL performs in parallel, some doesn't	
Summary	