
Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Lar ge-Scale Batch

Jür gen Glag
Düsseldorf, Germany

juer gen_glag@compuserve.com

Copyright Jürgen Glag, 1999 foil 01/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Car Insurance: Invoice processing

Example #1: once a year for all policies

assume 10 million policies = 10 million units-of-work in one job

elapsed time = 10.000.000 * 50 ms = 500.000 s
139 hours
ca. 6 days

Probably 10 parallel batch-streams needed
Not viable in parallel to online processing

ONLINE BATCH

Copyright Jürgen Glag, 1999 foil 02/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Car Insurance: Invoice processing

Example #2: date of contract = date of invoice

assume 10 million policies
even distribution of date of contact
200 working days/yr = 50.000 units-of-work per day

elapsed time = 50.000 * 50 ms = 2.500 s = 42 minutes
Can be processed in one job
Concurrent processing may have trouble

ONLINE BATCH

Copyright Jürgen Glag, 1999 foil 03/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Car Insurance: Invoice processing

Example #3: date of contract = date of invoice
AND batch designed as transactional processing

assume 10 million policies,even distribution of date of contact
50.000 units-of-work per day, 1 batch job = 1 unit-of-work

elapsed time = 50.000 * 50 ms = 2.500 s = 42 minutes
Batch jobs started as asynchronous task or by MQ
Solution may be prohibited by organizational restrictions or related job
streams

ONLINE BATCH

Copyright Jürgen Glag, 1999 foil 04/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Car Insurance: Invoice processing

from to

Large-Scale non-critical
Processing BATCHlets

Copyright Jürgen Glag, 1999 foil 05/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Batch-window is smaller than elapsed time of a "big
iron"-job

==> elapsed time of jobs must be reduced

Concurrent Online and Batch processing

No possibility for maintaining a batch-window
demand for short commit intervals
Online and Batch must be compatible in terms of locking

==> many short-running batch jobs
"transactional" batch
process only one logical unit of work
independent processing of independent objects

Why not parallelize additionally?
Copyright Jürgen Glag, 1999 foil 06/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Copyright Jürgen Glag, 1999 foil 07/35

"Batch is NOT
a million invocations of
an online-transaction"

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Prefetch flavors

==> information sources for prefetch
==> sequential prefetch
==> list prefetch
==> dynamic prefetch/sequential detection

Batch profits from dedicated design

Prefetch can kill your online performance

Prefetch is one of the key performance factors
for batch

Copyright Jürgen Glag, 1999 foil 08/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Prefetch flavors: information sources for prefetch

PLAN_TABLE.PREFETCH:
S = sequential prefetch
L = prefetch with page list
blank = unknown or no prefetch

Cursors will switch on prefetch

DECLARE CURSOR
SELECT ...
...
ORDER BY ...

Cursors should always contain the ORDER BY clause

Copyright Jürgen Glag, 1999 foil 09/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Prefetch flavors: Sequential Prefetch

 => ORDER BY clause without physical sort, i.e., RID's are in
matching sequence

 => First FETCH transmits 32 pages from DASD

 => The application waits for first FETCH as if it were a
synchronous I/O, subsequent FETCHes are served
from the bufferpool

 => When last matching row from the 32 pages is FETCHed,
another 32 pages are transmitted

 => Average time needed for one FETCH: 2 ms

Copyright Jürgen Glag, 1999 foil 10/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Prefetch flavors: List Prefetch

 => ORDER BY clause requires physical sort, e.g. ORDER BY is
supported by non-clustering index
objective is to avoid the random access to pages

 => Matching RID's are collected (in the RID pool) ...
.. and sorted by page-no and rid-no
.. ANDing/ORing in case of multiple index access is applied
.. resulting RID's are passed to the buffer manager for
retrieval

 => Access to the data is skip-sequential

 => Average time needed for one FETCH depends on the number
of matching rows per page

less efficient than Sequential Prefetch,
... but much better than random access

Copyright Jürgen Glag, 1999 foil 11/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Prefetch flavors: Dynamic Prefetch/
Sequential Detection

 => During run-time all cursors are supervised for sequential
access to data, no matter how they are marked in the
PLAN_TABLE (at bind time)

 => 5-out-of-last-8-principle:

If 5 (or more) pages of 8 subsequent pages in the page buffer
are accessed for rows, Dynamic Prefetch is switched on

If only 4 or less pages from 8 subsequent pages are needed,
Dynamic Prefetch is switched off

 => independent from BIND

Copyright Jürgen Glag, 1999 foil 12/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Avoid Prefetch in online processing

 Sequential Prefetch retrieves 32 pages from DASD
with one call (BP >= 1000 buffers)
Assume row length of 200 bytes => 20 rows/page
At first FETCH 32 * 20 = 640 rows are transmitted
normal online result set: 100 rows, i.e., a 5 pages
result set is processed in more than one dialog step

List Prefetch ... doesn't kill you, it only hurts
sort is performed anyway
small result sets are favorable because of reduced
number of I/O's on data
large result sets are more expensive than
Sequential Prefetch

Dynamic Prefetch
depends on ORDER BY clause and size of result set

Copyright Jürgen Glag, 1999 foil 13/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Avoid Prefetch in online processing

 How to get rid of Prefetch?

No selective switch-off possible,
e.g. Sequential Prefetch OFF

List Prefetch ON
All Prefetch flavors are switched off at one time

DECLARE cursor-name CURSOR FOR
SELECT ...
FROM ...
WHERE ...
ORDER BY ...
OPTIMIZE FOR 1 ROW

Copyright Jürgen Glag, 1999 foil 14/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Prefetch is one of the key performance factors for
batch

 Examples: Mass processing of data with one cursor
(single table access)

Table-size 10.000.000 rows
rowlength 250 bytes = 16 rows/page = 625.000 pg
result set of cursor amounts to 500.000 rows

Example 1: direct access to data
without Prefetch
with List Prefetch

Example 2: Processing via clustering index

without Prefetch
with Sequential Prefetch

Copyright Jürgen Glag, 1999 foil 15/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Prefetch is one of the key performance factors for
batch

Example 1 : direct access to data

without Prefetch
rows are located in 500.000 different pages
500.000 sync.I/O * 20 ms = 10.000 s = 3 hours
(sync. I/O on index leaf pages aren't reflected)

with List Prefetch
same result, if all rows of the result set are
located in different pages

shorter I/O-time if pages contain more than
one row of result set
e.g. 500.000 rows in 200.000 pages results in
I/O time reduced by 60%

Copyright Jürgen Glag, 1999 foil 16/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Prefetch is one of the key performance factors for
batch

Example 2 : near-sequential processing via clustering index

without Prefetch
cf. example 1: 3 hours

with Sequential Prefetch
pages are provided asynchronously

dependent on WHERE clause between 31.250 and
625.000 pages have to be read from DASD

31.250 pages * 2 ms = 62,5 s = 1 min
625.000 pages * 2 ms = 1250 s = 21 min

Copyright Jürgen Glag, 1999 foil 17/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

What is Parallelism?

Parallel I/O on a table or index in a partitioned tablespace

Flavors of Query-Parallelism

 ==> I/O parallelism since V3.1

==> CP parallelism since V4.1

==> Sysplex parallelism since V5.1

Prerequisites for Query-Parallelism

 ==> Bind options

==> Other requirements (e.g., CPU)

Copyright Jürgen Glag, 1999 foil 18/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

I/O parallelism

 Technique
utilization of multiple subtasks with asynchronous read
engines
every read engine reads strings of 32 pages with
Sequential Prefetch into virtual buffer pool

Scenarios
acceleration of I/O bound read-only queries
access to partitioned tablespaces
partitions are positioned on multiple volumes
long elapsed times

Limits
only viable for read-only queries
sufficient size of bufferpool required
parallelism at device level and in the buffer manager, but
not in the data manager

Copyright Jürgen Glag, 1999 foil 19/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

I/O parallelism

Copyright Jürgen Glag, 1999 foil 20/35

ProzeßProzeß

vo
lu

m
e

1
pa

rt
iti

on
 1

vo
lu

m
e

2
pa

rt
iti

on
 2

vo
lu

m
e

3
pa

rt
iti

on
 3

part i t ion 1
pages 1 - 32

part i t ion 2
pages 1 - 32

part i t ion 3
pages 1 - 32

processing
pages of

part i t ion 1

then

processing
pages of

part i t ion 2

then

processing
pages of

part i t ion 3

result set for
query

3 partit ions
on 3 volumes

buffer manager data manager

3 subtasks 1 subtask

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

CPU parallelism

Technique
utilization of multiple subtasks for all DB2 functions,
not only for asynchronous read engines
subtasks can run on all processors of a CEC

Scenarios
acceleration of I/O bound read-only queries
access to partitioned tablespaces
partitions are positioned on multiple volumes
long elapsed times

Limits
 only viable for read-only queries

sufficient size of bufferpool required
data must be placed on many devices, else contention of
subtasks
the more processors, the better
only with type-2-indexes

Copyright Jürgen Glag, 1999 foil 21/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

CPU parallelism

Copyright Jürgen Glag, 1999 foil 22/35

ProzeßProzeß

vo
lu

m
e

1
pa

rt
iti

on
 1

vo
lu

m
e

2
pa

rt
iti

on
 2

vo
lu

m
e

3
pa

rt
iti

on
 3

part i t ion 1
pages 1 - 32

part i t ion 2
pages 1 - 32

part i t ion 3
pages 1 - 32

result set for
query

3 partit ions
on 3 volumes

buffer manager
data manager

relational data system

3 subtasks 4 subtasks

procesing
pages of

part i t ion 1

procesing
pages of

part i t ion 2

procesing
pages of

part i t ion 3

p
i
p
e

 m
a
n
a
g
e
r

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Sysplex parallelism

Technique
utilization of multiple sub-tasks for all DB2 functions, not
only for asynchronous read engines
subtasks can run on all processors of a CEC
1 parallel sysplex = up to 32 MVS/ESA CEC's coupled
loosely, each with one MVS/ESA and DB2 image

Scenarios
acceleration of I/O-bound read-only queries
access to partitioned tablespaces, very large TS
partitions are positioned on multiple volumes, at max. 254
very long elapsed times

Limits
 should a query be run on various/all processors of a

parallel sysplex?
aren't there other tasks waiting for resources?

Copyright Jürgen Glag, 1999 foil 23/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Sysplex-parallelism

Copyright Jürgen Glag, 1999 foil 24/35

appl icat ion
programs

sysplex
member

X

master
task

coordinator

sysplex member A

sysplex member B

sysplex member C

result
set

order by
group by

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Prerequisites for Query-Parallelism

Bind options

static SQL

DEGREE(ANY) at BIND or REBIND

only effective for static SQL

packages contain static AND dynamic SQL

dynamic SQL

SET CURRENT DEGREE = "ANY"

this special register is only effective for
dynamic SQL

Copyright Jürgen Glag, 1999 foil 25/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Prerequisites for Query-Parallelism

Other requirements

VPPSEQT
(virtual bufferpool parallel sequential threshhold)
must be sufficiently sized

For CPU-parallelism at least 2 ACTIVE tightly
coupled processors are required

Remark: If only one processor is active at the start
of a query, I/O-parallelism will be activated

Copyright Jürgen Glag, 1999 foil 26/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

PLAN_TABLE is information source

variant 1: EXPLAIN particular statement

step 1: population of PLAN_TABLE

EXPLAIN PLAN SET QUERYNO = nn FOR
SELECT ...
FROM ...
WHERE ...

host-variables must be eliminated,
instead use value or ?

step 2: show results from PLAN_TABLE

SELECT *
FROM PLAN_TABLE
WHERE QUERYNO = nn
ORDER BY QBLOCKNO, PLANNO, MIXOPSEQ

Copyright Jürgen Glag, 1999 foil 27/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

PLAN_TABLE is information source

variant 2: BIND with option EXPLAIN(YES)

relevant information is stored in
package_owner.PLAN_TABLE

CURRENT SQLID is qualifier for PLAN_TABLE in
case of dynamic SQL

General remarks:

EXPLAIN(YES) should always be activated

overhead can be neglected in comparison to the
benefits

added cost equals additional INSERTs into
PLAN_TABLE

Copyright Jürgen Glag, 1999 foil 28/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Copyright Jürgen Glag, 1999 foil 29/35

PLAN_TABLE Column Explanation
ACCESS_DEGREE number of parallel tasks of a query

settled during BIND
with usage of host-variables the value may be 0
number of parallel tasks can differ at execution time

ACCESS_PGROUP_ID parallel group ID for access to new table (cf. SORTN_)
a parallel group is a set of commands with equal
number of tasks executed in parallel

JOIN_DEGREE number of parallel tasks for a join of composite table
(SORTC_) with new table
is settled at bind time, but can differ at execution time
with usage of host-variables the value may be 0

JOIN_PGROUP_ID ID of parallel group that joins the composite table with
the new table

SORTC_PGROUP_ID ID of parallel group for parallel sort of composite table

SORTN_PGROUP_ID ID of parallel group for parallel sort of new table

PARALLELISM_MODE type of parallelism
I = query I/O parallelism
C = query CPU parallelism
X = sysplex query parallelism

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Copyright Jürgen Glag, 1999 foil 30/35

Query uses Parallelism possible ? Remarks
I/O CPU Syspl

Isolation RR or RS Y Y N

Transporting the locks to the coordinator
too expensive
Instead use BIND-option CS or UR and
execute
LOCK TABLE ... IN SHARE MODE
before query execution

access with RID list
(list prefetch or multiple
index access) Y Y N

PLAN_TABLE.PREFETCH = 'L'
PLAN_TABLE.ACCESSTYPE = 'M', 'MX',
'MI', 'MQ'

access with type-1-index N N

correlated subquery N N N

DB2 attempts parallel processing for outer
table
in case of non-correlated queries both
tables are parallelized

IN-list N N N PLAN_TABLE.ACCESSTYPE = 'N'

updateable or
ambiguous cursor with
CURRENTDATA(YES) N N N

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Copyright Jürgen Glag, 1999 foil 31/35

Query uses Parallelism possible ? Remarks
I/O CPU Syspl

OUTER JOIN N N N PLAN_TABLE.JOINTYPE = 'F', 'L'

Merge scan join with
more than one column N N N

materialized views,
materialized nested
table expressions N N N

EXIST in WHERE-
predicate N N N

UNION for more than
one query block N N N

DB2 cannot process independent sub-
selects in parallel

access to temporary
table N N N

If a temporary table is populated with
INSERT INTO ... SELECT, the subselect
can be performed in parallel

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Read-only Batch Read-only Batch
running alone running together with others

FOR FETCH ONLY FOR FETCH ONLY
PREFETCH PREFETCH
LOCK table
Table unload
Query parallelism on part. TS Query parallelism on part. TS

Batch with Updates Batch with Updates
running alone running together with others

PREFETCH PREFETCH
Table unload
Query parallelism on part. TS Query parallelism on part. TS
Short COMMIT intervals Short COMMIT intervals

Copyright Jürgen Glag, 1999 foil 32/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Further recommendations, esp. for parallel
processing

Avoid hot-spot partitions, partitions should be of similar size

artificial keys with no (organizational) meaning

otherwise manual balancing necessary
(changes imply DROP + CREATE, wait for version 6)

V6: ALTER INDEX to adjust partition limits,
REORG PENDING

Copyright Jürgen Glag, 1999 foil 33/35

query
parallelism

jobs
running

in parallel

combination
of both

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Jobs running in parallel

input data should match the partitioning key

=> no interference on partitioning index
=> no timeouts, no deadlocks

Avoid timeout/deadlock

short COMMIT intervals

parallelize job streams according to partitioning index

Minimize locking

short COMMIT intervals
eliminate ambiguous cursors => FOR READ ONLY

Copyright Jürgen Glag, 1999 foil 34/35

Examples for
Large-Scale
Batch

Reasons to
reduce elapsed
time

N times Online
Processing or
dedicated batch
design?

Parallelism:
Options, Limits,
typical usage

Some SQL
performs in
parallel, some
doesn't

Summary

Design Guidelines for Large-Scale Batch

Secondary indexes

Type-1-indexes frequently cause timeout and deadlock
problems

=> move to type-2-indexes
=> V6: no further support of type-1-indexes

Update activities of jobs running in parallel

separate class

Copyright Jürgen Glag, 1999 foil 35/35

